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The nonstationary radial motion of a long cylindrical column of con-
ducting gas in a time-~varying longitudinal magnetic field is con-
sidered. Exact solutions are found by the method of separating the
variables for the system of equations of magnetohydrodynamics on

the assumption that the statistical pressure of the plasma at the boun-
dary of the column is proportional to the external magnetic pressure,
Some numerical computations are performed and the energetic char-
acteristics of the interaction process are calculated, The ratio of the
useful work done by the gas over an infinite time interval to the initial
energy of the column is given as a function of the magnetic Reynolds
number, We note that a similar method was applied in [1], where

not only was the average temperature taken over the cross section, but
the inertia of the medium was also neglected, When the inertia is
taken into account, we have the additional requirement that the sta-
tistical pressure be propoitional to the magnetic pressure at the boun~
dary of the columa.

A physically similar model may be interpreted, for example, asthe
expansion of a compressible conducting gas column in a nonconducting
incompressible fluid situated in a permeable cylinder of some radius
Rinfinite along the axis of symmetry, The requirement that the
statistical pressure be proportional to the magnetic pressure reduces

to the condition that the extemal pressure on the boundary of the
permeable cylinder of radius R should vary according to a specific law,
which may easily be determined.

We shall make the following assumptions,
(1) The conductivity of the gas is finite and is de-
termined by the temperature

0.1)

(2) The gas is ideal; viscosity and thermal conduc-
tivity are not allowed for.

(3) Displacement currents are everywhere neg-
lected. In particular, it is assumed that the variation
of magnetic field strength on the external boundary of
the expanding cylindrical column may be described
by an arbitrary law, without considering the electro-
magnetic waves in the external nonconducting space.
The latter assumpticn is correct if the velocity of
expansion is much less than the velocity of light.

(4) A statistical pressure proportional to the ex-
ternal magnetic pressure is maintained on the exter-
nal boundary of the column.

This requirement is connected with the condition
that the problem be self-similar in the sense that the
variables be separable.

1. Basic equations. In view of assumptions (1)—(3)
the system of equations of magnetohydrodynamics in
cylindrical coordinates has the form
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Here H (r, t) and v(r, t) are the longitudinal and
radial components of the vectors H and v, respec-
tively, The vectors H and v do not have any other
components (d/dz =0, d/d g = 0), We will seek a
solution satisfying the condition of proportional ex-
pansion, i, e.,
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where « (t) is the unknown law of motion of the cylin-
drical column boundary.

We introduce the notation
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Here, in order to construct dimensionless quanti-
ties, we choose the following scales: H, is the mag-
netic field strength at the boundary of the column at
the initial moment of time, @, is the initial radius of
the column, T, is the temperature at the boundary of
the column at the initial moment, v, is a character-
istic velocity, o, is the conductivity at a temperature
T,. We represent equations (1.1), (1.2), and (1.3) in
the form
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The third equation of system (1.4) may be inte-
grated. We obtain
p; = @ (§) /¥ (7). 1.5

Here & (£) is some function of £. Employing (1. 5)
and introducing the new unknown functions
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the remaining equations may be written in the form
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We are looking for the particular solution of sys-
tem (1.7) in the form
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(i. e., the self similar solution [1]); here we shall

assume that

VO)=1 G0 =1. (1.9)
It is easy to see that the variables in equatiohs (1.7)

may be separated on condition that
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Here the constant is equal to 1 in view of (1. 9) and

the initial condition
A(0) =1. (1.11)

It follows from (1, 10) that in this case the ratio of
the statistical pressure to the magnetic pressure for
every given particle is a constant quantity indepen-
dent of time, This condition is fulfilled if a pressure
is maintained on the external boundary of the cylin-
drical column which is proportional to the magnetic
pressure (assumption (4)),

After setting (1.8) in system (1.7), employing con-
dition (1. 10) and separating the variables, the follow-
ing two systems of equations are obtained:

for the function T (1), V (1), G(T), A(7)
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for the functions X (£), Y (&), Z (§), @ (&)
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Here «, 8, v and ¥ are some constant guantities,
In view of the scaling quantities adopted and the nor-
malizing conditions (1, 9) for functions of T the boun-
dary conditions for the spatial functions will be as
follows:

Z®ka =1, X @ka=1 Y @®ks=q(13)

where g denotes the ratio of the statistical pressure
to the magnetic pressure at the boundary of the col-
umn under consideration. On the basis of (1,19) the
constant ¥ from the last equations of (1,12) and (1, 13)
must be set equal to unity. '

2. Integration of the resulting systems of equationas,
The unknown functions must satisfy not only the sys-
tems of equations (1, 12), but also the additional con-
dition (1. 10), necessary for obtaining the particular
solution under congideration, and so the constants «,
B, and p may not be arbitrary., In fact, we shall first
of all consider the system of equations for functions
of the variable 7. We will replace the function G (7)
in all the equations of (1.12), expressing it in terms
of A(7) and T (1) from (1. 10).

We shall then have the system of four equations
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for the unknowns T (1), V (7), and A (7).

The number of equations is larger than the num-
ber of unknowns and so the system can be consistent
only if we have functions determining the relations
between the constants @, 8, and i. In order to obtain
these relations we shall consider the last three equa-
tions of the system (2.1); we have
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We differentiate the last equation and write it in
the form
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Setting T (7) from(2, 2) in the first equation of sys-
tem (2.1), we obtain another equation for A (7):
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For system (2. 1) to be self-consistent equations
(2. 4) and (2. 5) must be identical, Two cases must be
considered separately.

In the first case o« = 0. We equate the indices of
powers of A, and also the constant multipliers on the
right sides of equations (2, 4) and (2. 5).

We obtain as a result
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Here in deriving the expression for « use was made
of the expression for f.
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Thus, of the three constants o, 8, and p only one
is independent. From equation (2. 3) and conditions
(1.11) and (2. 6) we have
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It follows from relations (2. 2) that
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The independent constant ¢ is expressed in terms
of the dimensionless initial velocity k = A '(0).

The second case is a = 0, For the equations (2. 4)
and (2. 5) to be identical it is necessary that the con-
stant multiplier on the right side of equation (2. 4) be
equal to zero. There are two possibilities.

The first, 2n8 — u = 0, leads to the trivial solution
A'(T) = 0. The second, 2nf(2»n ~ 1) + ¢ (1 - 2n) =0,
gives
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Here
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Thus the system of equations for functions of T is
fully solved.

It follows from (2, 8) and (2. 11) that the solution
which has been obtained is characterized by the fact
that the external magnetic field (i. e., the magnetic
field on the external surface of the column) does not
remain constant but decreases as the radius of the
column increases. In fact,
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3. Solution of the system of equations (1.13) for
the spatial functions. The first case is @ = 0. From
the first equation of system (1. 13) with o = 0 and
boundary conditions (1. 14) we have

Y (8) =g —2¢), a=1+gq. (3.1

From the third equation of system (1.13), employ-
ing (3.1), we obtain

X (@)= () =2 L (2. @)

We set this expression in the second equation of
system (1. 13); using (2.9) we obtain
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We have boundary conditions for this equation in
the form

dZ __(p,

Zl )"’ (L —1),

00" 3.9)

The second condition is obtained from the third
equation of system (1.13) and the boundary conditions
(1. 14) for the functions X (§), Y (§).

To solve the equation (3. 3) we introduce the new
independent variable x = In £; we obtain for the func-
tion u(x) =Z(¢)

u’ —2u’ +B
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This equation does not contain the independent vari-
able x explicitly, We thus introduce the new function
@ (u) = u'; we obtain then for the unknown ¢

()= (L 21 q)l/z. (3. 5)
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Since x = 0 for £ = 1, the boundary condition is ob-
tained from (3.4):
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The solution of equation (3. 5) has the form
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Since ¢ = du/dx, from (3.6) and the condition u (0) =
= 1 we find that
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Hence we obtain the required solution of equation
(3. 3) satisfying conditions (3. 4):
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The ratio k/ v which enters in the expression (3.7)
for K in fact represents the magnetic Reynolds num-
ber, since

& frant Wieo _p,,. (3. 9)

2

Letting Z, represent the value of Z for £ =0, we
have from (3. 8), taking (3.7) into account,
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Zy

which gives the quantity Z; as a function of the mag-

netic Reynolds number Ry,. Employing this relation,
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we may write the expression for Z (§) in the form

1

1/2
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Thus in the case when « = 0 the system of equations

for the spatial function may also be integrated com-

pletely [the solution for Y(£) is given by formula (3. 1),

for X () by formula (3. 2) and the solution for & (¢) is
obtained from the fourth equation of system (1.13)].
The second case is « # 0. In the system of equa-
tions (1.13) the constants o, B and ¢, in accordance
with (2. 6) and (2.7), are unambiguously determined
by specifying the dimensionless initial velocity k =
=A' (0). The system (1.13) cannot be integrated ana-
Iytically and so we reduce it to a form suitable for
numerical solution on an electronic computer.
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To do this we express the functions @ (£) and
X (&) from the two last equations of system (1.13) in
terms of Y (§) and Z (£); we have
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Setting these expressions in the first two equations
of system (1.13), we obtain a system of two equations
for the functions Y() and Z(¢):
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We carry out the change of independent variable
x = £ and reduce the equations (3. 13) to the form
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We introduce the new unknown functions

Q@) = Z, (3.15)

We obtain the system of equations
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for the unknown functions ¢ (x), Z (x), ¢ (x) from
equations (3. 14),

On the basis of (1.14) and (3. 4) we have the follow-
ing boundary conditions:
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for the required functions.

Thus finding the spatial function Z (§), Y (§), @ (§)
and X (£) in the case when o = 0 is reduced to inte-
grating system (3. 15) together with conditions (3. 17).

Some numerical computations were petformed and the energetic
characteristics of the interaction process weie calculated, i.e., the
amount of work performed when the column expands against the
electric body forces, Joule losses inside the conducting gas, variation
of internal and kinetic energy. By way of example, the figure gives
some values of the coefficient 7 as a function of the magnetic Rey-
nolds number (circles correspond to the value k = 1,0, triangles to
k=0,5). The coefficient 7 is specified as the ratio of the useful work
done in the time from t = 0to t = « to the initial energy of the
column, i.e.,

A,—Q
= Wo+ Us

where A, and Q, are the work done against the electric body forces,
and the magnitude of the Joule losses over the specified time inter-
val, while Wy, Uq are respectively the kinetic and internal energies
at the initial moment of time.

The expressions for the magnitudes of the energies A, Qu, W
and U are not given here, since they may easily be obtained from the
meaning of these quantities.

The functions obtained for other values of the parameters %, n, q,
kin both cases (=0, o # 0) are similar to those given above,
except that for small q the allowable interval of v‘a'.riation of Rm (for
which 0 = Z; = 1) lies in the region of large values, and so the
values of 1 are positive everywhere in this interval,

It is clear from the curves given that for some values of Ry, the
difference A, — Q. becomes negative, although the work A, per-
formed against the electric body forces is here positive, A similar
phenomenon was obtained in [2] for the case when there is no magnetic
field inside the column at the initial moment of time, and the mag-~
netic field strength at the boundary of the column is not equal to zero,

The data given show that a similar phenomenon may also occur
in the case where there is a continuous initial magnetic field distri-
bution inside and on the boundary of the column (in this case the
initial distribution of the magnetic field is determined by the function
Z (&)

It must be stressed that in this paper, just as in {2], all the energy
quantities refer to a time interval beginning from some "initial”
moment, and we do not consider the way that this initial state comes
about nor its energy characteristics,
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